Category: Philosophy of Nature

Philosophical Implications of Quantum Mechanics

Richard Feynman (1918-1988) argues in his famous Lectures on Physics (1961/62) that finite accuracy of measurement also makes the future very unpredictable, because even very small errors in prediction have cascading effects that lead to vastly different outcomes. Thus, the difference between a classical interpretation (deterministic) and a quantum-mechanical explanation (indeterminisitc) is not as categorical as we sometimes assume. He compares classical and quantum-mechanical approaches to physics, and comes to the conclusion that “…it  is not true that we can pursue science completely by using only those concepts which are directly subject to experiment.” If this applies to physics, it is...

Darwin: The marvels of a riverbank

At the end of the “Origin of the Species” (1859) Darwin writes about a riverbank: It is interesting to contemplate an entangled bank, clothed with many plants of many kinds, with birds singing on the bushes, with various insects flitting about, and with worms crawling through the damp earth, and to reflect that these elaborately constructed forms, so different from each other, and dependent on each other in so complex a manner, have all been produced by laws acting around us. These laws, taken in the largest sense, being Growth with Reproduction; Inheritance which is almost implied by reproduction; Variability...

The Cambridge Declaration on Consciousness

The field of Consciousness research is rapidly evolving. Abundant new techniques and strategies for human and non-human animal research have been developed. Consequently, more data is becoming readily available, and this calls for a periodic reevaluation of previously held preconceptions in this field. Studies of non-human animals have shown that homologous brain circuits correlated with conscious experience and perception can be selectively facilitated and disrupted to assess whether they are in fact necessary for those experiences

Scales of the Universe: Small, Large, and Complex

It is difficult for us to fathom the scale of the universe. The differences between the smallest structures and the largest are so enormous that linear scales are useless. We need exponential scales, which make the numbers appear to be easy, even when the geometry is simply incomprehensible. A simple example can demonstrate these size differences – there are more atoms in a glass of water than there are glasses of water in all the oceans combined. (If you don’t believe it, here is the math.)

On an exponential scale in meters, humans are located at the midpoint between the nanometer scale (1×10−9 m) (a strand of DNA is 3 nanometers thick) and the scale of stars ( the sun is 1.4 ×109 m in diameter.) Reaching “down”, what we try to do in nanotechnology, is just as difficult as reaching “up,” exploring the solar system with our probes. But, the journey is only beginning.